Paediatric sleep overview
(and an interesting case)

Dr Paul D. Robinson
MBChB, MRCPCH, FRACP, PhD
Staff Specialist, Department of Respiratory Medicine
The Children’s Hospital Westmead

Paediatric Medical Association Allergy Section conference (BLFa)
Skovde, 22nd September 2017
Obstructive Sleep Apnoea

- Breathing during sleep with partial upper airway obstruction and/or intermittent complete obstruction
- Disruption of normal ventilation
- Prevalence 2 - 5%
- Commonest cause = enlarged adenoids and tonsils

- Gold standard for diagnosis of OSA is PSG
- Classify severity based on Apnea/hypopnea index
 - 1-5/hr Mild OSA – Conservative, non surgical
 - 5 to 10 Moderate OSA – Most often surgical
 - >10/hr Severe OSA - Surgical+/- CPAP

- Higher risk - Complex disorders like Craniofacial syndromes, Pierre Robin, Downs, Neuromuscular disorders
Nocturnal pulse oximetry

- Specifications of overnight pulse-oximetry
 - Useful tool for screening OSA
 - TCM40, Nellcore 3000 (fast averaging)
 - Overnight monitoring for at least 6 hours
 - Averaging time 2-4 seconds
 - Well versed to differentiate between artefacts and true desaturation
 - McGill’s Oximetry score
Nocturnal pulse oximetry

- Nixon et al.; Pediatrics; 04
- Identify clusters of desaturation below 90%
 - Normal or inconclusive (>90%, 2 clusters below 90)

- Cannot rule out sleep apnea and will need further evaluation
- Low risk surgery
- Performed non-tertiary setup
Nocturnal pulse oximetry

- Mild to moderate abnormal (> 3 clusters below 90%)
 - > 3 clusters of desaturations below 90%
 - Will need ENT intervention
 - Can be done non-tertiary setup but will need to be soon
Nocturnal polysomnography

- Severe abnormal (Frequently <90%, <85%)
- Frequent desaturations below 85%
- With CO2 retention
- Urgent tertiary hospital referral
 - May need CPAP
 - ENT only where PICU is available
Sequelae of OSA

• Intermittent Hypoxia and sleep fragmentation
 – Neuro-behavior in children
 • Inattention, hyperactivity, general conceptual abilities, arithmetic skills
 • Verbal, non-verbal intelligence
 • Irritability, aggressiveness
 – Systemic hypertension during wakefulness (increased sympathetic tone)
 – Pulmonary hypertension (more with continuous)
• Present even in mild OSA (Urschitz et al)

Urschitz; Pediatr; 05
Blunden S; J Clin Exp neuro; 00
Kennedy JD; Ped Pulmonol; 04
Beebe; Review; Sleep; 06
Polysomnogram (PSG)
Developmental changes

Normal sleep in children

REM & NREM sleep by age
CPAP and non-invasive ventilation

• Challenges
 – lack of available equipment for use in small children (appropriate nasal masks and machinery)
 • maximal frequency of many commercial NIV machines is inadequate for infants with higher baseline respiratory rates.
 – need for mask training to facilitate compliance

• important potential side-effect of long-term use = mid-face hypoplasia

Interface choices

Device choices
Indications

• primary indication for nCPAP is OSA
 – emerging use is preoperatively as bridge to AT
 • 2-week treatment period (with good compliance) allows ‘re-setting’ of central chemoreceptors, with normalization of normal physiological responses

• Possible benefit in tracheobronchomalacia or extrinsic airway compression in congenital cardiac disease

• Respiratory failure from a variety of causes including
 – neuromuscular disorders
 – severe chronic lung disease
 – bronchiectasis due to end-stage cystic fibrosis or recurrent aspiration
A rare cause of childhood obesity
Introduction

• 1965 – Described a constellation of symptoms termed “Late Onset Central Hypoventilation Syndrome with Hypothalamic Dysfunction (LO-CHS/HD)“
 Fishman et al Am J Dis Child 1965

• 2007, Diego Ize-Ludlow renamed using acronym ROHHAD-NET
 – Heterogeneous medical condition
 – Natural history and aetiology is poorly understood.
 – Incidence is rare with ~100 reported cases.
 – High burden and mortality rates between 50-60%
ROHHAD & ROHHAD-NET

- Rapid Onset
- Obesity
- Hypoventilation
- Hypothalamic Dysfunction
- Autonomic Dysregulation
- Neural tumour syndrome
Genetics

- No specific genetic marker has been implicated.
- Some familial cases have been reported, suggesting that it may be a monogenic condition.
- Absence of PHOX2B mutation helps to rule out Congenital Central Hypoventilation Syndrome

Weese-Mayer DE et al Orphanet J Rare Dis. 2015

Paul Robinson 2017
Clinical presentation

• Dramatic weight gain over 6-12 months in the first 10 years of life
• Due to hypothalamic dysfunction
 – begins at the age of 2-3 years
 – rapid-onset obesity of 10-20 kg
 – almost simultaneously, height velocity will decrease
Exogenous Obesity vs. ROHHAD

<table>
<thead>
<tr>
<th></th>
<th>Exogenous obesity</th>
<th>ROHHAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep apnoea</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>GH unresponsiveness</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>TSH levels</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Height velocity</td>
<td>increased</td>
<td>decreased</td>
</tr>
<tr>
<td>IGF-1</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Autonomic dysfunction</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Alveolar hypoventilation</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Tumours of sympathetic nervous system</td>
<td>absent</td>
<td>present</td>
</tr>
</tbody>
</table>
Clinical presentation: Endocrine

- Hypothalamic dysfunction
 - Growth failure deficiency or unresponsiveness
 - Excessive secretion of ACTH, hypercortisolism
 - Glucocorticoid deficiency
 - Hypogonadotropic hypogonadism
 - Hyperprolactinemia
 - Hypernatremia. Adipsic or Diabetes insipidus
 - Hypogonadism
 - Precocious puberty
 - Central hypothyroidism

Bougnères P et al J Clin Endocrinol Metab. 2008
Clinical presentation: Autonomic dysfunction

• Median age 3.6 years
 – inability to regulate body temperature
 – slow heartbeat
 – excessive sweating
 – altered pupil response to light
 – Strabismus
 – Gastrointestinal dysmotility with constipation and chronic diarrhoea
Clinical presentation: Respiratory

• Initially present with OSA
• Develop nocturnal hypoventilation (NH) later
• With advancing age, hypoventilation becomes apparent awake and asleep
 • Lack of normal responsivity to low O_2 and elevated CO_2→ cardiorespiratory arrest
 • Require ventilatory support (asleep or awake)
 • Bi-Level, Tracheostomy, Diaphragm pacing
Clinical presentation: Cardiac

- Arrhythmia
- Profound bradycardia requiring cardiac pacemaker
- Blood pressure dysregulation
- Right ventricular hypertrophy secondary to cor pulmonale
- Heart failure
Neural crest tumours

• Approximately 40% of the patients may develop neural crest tumours (ganglioneuroblastomas, ganglioneuromas)
 – occurs 7 -16 years after onset of obesity
 – usually found in chest or abdomen or along sympathetic nervous system chain
 – No coexisting Hirschsprung disease (think CCHS)
 – Calcification in CT is common
Developmental and neurobehavioural disorders

- Mild mental retardation and developmental regression
 - due to suboptimal ventilatory support
- Personality changes, irritability and physical aggression
- Anxiety
- Sleep symptoms: insomnia and nighttime psychosis
- Seizures
Diagnostic criteria

1. Rapid onset obesity and alveolar hypoventilation during sleep starting after 1.5 years
2. Hypothalamic-pituitary endocrine dysfunction (≥1)
 – Rapid-onset obesity
 – Hyperprolactinaemia
 – Central hypothyroidism
 – Disordered water balance
 – Failed growth hormone stimulation test
 – Altered onset of puberty
3. Absence of CCHS-related PHOX2B mutation

Carroll MS et al Pediatr Pulmonol. 2015
Paul Robinson 2017
Other Diff Diagnosis

- Prader-Willi syndrome
- Bardet-Biedl syndrome
- Leptin receptor deficiency
- Cushing’s syndrome
- GH deficiency
Initial presentation

- Referral age $5^{1/2}$
 - 4kg/month weight gain despite sensible lifestyle choices
 - Hyperphagia
 - Extreme fatigue
 - Decreased socialisation
 - Investigations by paed
 - Central hypothyroidism
 - Central adrenal insufficiency
 - CT head normal

- PMHx:
 - LSCS @ 39/40 BW 3.7kg
 - No neonatal problems
 - Growing and developing normally

- Family Hx:
 - Central American ethnicity
 - No obesity or endocrinopathy
Rapid Obesity

As of 2013

Oct 2011, 4y10m

Oct 2013, age 6y10m
Hypothalamic Dysfunction

- **Central Adrenal insuff.**
 - Rx hydrocortisone 8-10mg/m²/day

- **Central hypothyroidism**
 - Rx thyroxine to keep FT4 in upper normal range

- **GH deficiency**

- **Normal pituitary MRIs**

<table>
<thead>
<tr>
<th></th>
<th>0 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>42 nmol/L</td>
<td>222</td>
<td>301</td>
</tr>
<tr>
<td>ACTH</td>
<td>3.8 pmol/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH</td>
<td>3.12 mU/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>7.2 pmol/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolactin (0-760)</td>
<td>1088 u/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-1 (6-37)</td>
<td>18.7 nmol/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH</td>
<td><1 mU/L</td>
<td><1 mU/L</td>
<td><1 mU/L</td>
</tr>
<tr>
<td>αfp (0-6)</td>
<td>3 kIU/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>βHCG (0-5)</td>
<td><1 IU/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>146 mmol/l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Autonomic Dysfunction

- Temperature instability
- Decreased HR variability
- Piloerection
- Diarrhoea – frequent, impairing sleep
- Dizziness – but no documented orthostatic hypotension
Hypoventilation: Evolution of REM hypoventilation on PSG

PSG Dec 2012 – initial OSA

PSG April 2013 – REM hypoventilation

Consistent with Reppucci et al 2016

Paul Robinson 2017
Bilevel ventilation: Challenges

- Mask fitting
- Developed parasomnias: night terrors
- Persisting daytime sleepiness: modafinil (Oct 2013)
 - No daytime hypoventilation
 - MSLT later diagnostic for narcolepsy
- Progression to tracheostomy (Dec 2013)
 - Electively planned for Jan 2014: ongoing Bilevel difficulties, inadequate ventilatory control
 - Performed Dec 2013: after acute deterioration with viral illness
Screening for Neural crest tumours

2.5cm mass - mesentery
A sign of the underlying process?

Mesenteric Lymph node biopsy

Normal - Reactive follicular hyperplasia

SA: Castleman’s Disease like pattern

- Variously sized reactive germinal centres
- Mantle of small lymphocytes
- Small atretic follicle
- Onion skinning appearance of lymphocytes
- Penetration by vessels lined by plump endothelium
Progress through 2014

- Tracheostomy
- Discharge home
- IVIG Commenced (1g/kg monthly)
- Back to school
- Cyclophosphamide (0.75g/m2)
 4 weekly 6 doses

Paz-Priel et al 2011
Evidence for treatment response: PET scan findings

Dec 2013

Oct 2014

Cervical LN Abdominal LN Inguinal LN
Cyclophosphamide

Prader Willi diet (<1000 kcal/day)

Increasing ventilatory needs
Progression of Hypoventilation …

Ventilatory Pressures

Episodes of lobar collapse: July and Sep 2014

Daytime Transcutaneous CO₂ O₂ trolley (Oct 2014)

Venous pCO₂ 38 pH 7.43
Paul Robinson 2017

Venous pCO₂ 54 pH 7.28
Cyclophosphamide
Rituximab
Prader-Willi diet (<1000 kcal/day)
Increasing ventilatory needs
Max ventilator settings
Permissive hypercapnia
Rapid drop
Deteriorating autonomic dysfunction
Very restricted diet (<600 kcal/day)
Dietary challenges
Sirolimus
+ Azathioprine
Paul Robinson 2017
Evolving complexity and issues

- Sleep: Narcolepsy, Partial arousals
- Chronic headaches
- Obesity
 - Liver (Severe NASH), Acanthosis nigricans, hyperinsulinism, mobility
- Behavioural issues
 - Body image effects, Low mood, Impact on family relationships
 - Medications: Fluoxetine, Amitriptyline
- Cardiac arrhythmias – SVT
- Enuresis
- Autonomic dysfunction
 - Significant recent deterioration
 - Recurrent Aspiration, swings in temp/BP/Na
Current status

• To minimise aspiration risk
 – Epiglottis oversewn with small tube to facilitate voice
 – Gastrostomy inserted and used for part of oral feed
• Azathioprine added with effect. Remains on sirolimus and IVIG
 – Low threshold for review
• Challenges achieving dietary restriction
 – CHO based thickeners, Enjoyment of eating/drinking
 – Weight stabilised at 95kg
• Stable ventilation
• Home carers at night, Remains at school each day
• Structured approach to behaviour management
• No evidence of neural crest tumours to date
• Palliative care involved for discussions regarding limiting treatment
Fluctuating ventilation needs

Cyclophosphamide Sirolimus + Azathioprine
Genetic vs. autoimmune process?

- Genetics negative to date
 - Whole exome sequencing negative (Brisbane), targets including
 - PHOX2B negative (excludes CCHS)
 - Coding regions for Hypothalamic-specific expression/development and CNS development
 - Note: Reports of monozygotic twins discordant for ROHHAD
 Patwari et al Ped 2011

- Autoimmune process?
 - Castleman’s disease like changes in lymph node
 - Narcolepsy component Mahlios et al Curr Opin Neurobiol. 2013
 - Evidence of response to IVIG
 - Evidence of response to cyclophosphamide Jacobsen et al Ped 2016
 - Evidence of response to Sirolimus (but not Rituximab)
 - Serum CRP trend
 - Note: No evidence of CNS inflammation (2013, 2016)
 - CSF no oligoclonal bands, Normal neurotransmitters
Discussions points

- The challenges of treating a condition with an unknown but probably poor prognosis
- Quality of life balance
 - Tracheostomy, periods of cuffed tracheostomy (voice), getting to school
 - Managing aspiration risk – oversewn epiglottis
 - Risks of medications used
- Unclear prognosis and course of the condition
- Role of overseas consultation…
- Next steps in management…
Meet Sebastian, 7, whose weight has TRIPPLED in two years because of a rare condition which affects just a handful of people around the world... and it could kill him

- Sebastian Aguiar is seven-years-old and weighs almost 70kg
- The boy from western Sydney suffers from ROHHDAS syndrome
- He weighed a healthy 25kg less than two years ago
- He is one of only about 75 people in the world with the condition
- He is believed to be only person in Australia suffering from the disease
- ROHHDAD syndrome is potentially lethal and incurable
- It affects breathing, body temperature, heart rate and blood pressure
- A fundraising page has been set up to send him to Chicago for tests
- It is his only hope as the syndrome is potentially lethal and incurable

By LEESA SMITH FOR DAILY MAIL AUSTRALIA

Acknowledgements

• The multidisciplinary teams involved
 – Endocrinology: Shubha Srinivasan
 – Respiratory and Sleep Medicine
 – Immunology: Melanie Wong
 – Surgery: Jonathan Karpelowsky
 – Psych Med: Katherine Knight, Natalie Ang, Karen Munro, Catherine Cruz
 – Neurology: Russel Dale
 – ENT: Alan Cheng, Sue Trapani
 – Cardiology: Christian Turner
 – Physiotherapy
 – Occupational therapy
 – General Paediatrics: Joanne Ging
 – Palliative Care

• Chetan Pandit
• Arthur Teng

With special thanks to all the nurses who have looked after this child to date....and everyone at his school!!